
Local Completeness Logic on Kleene Algebra with Tests

Marco Milanese[0000−0002−6215−7359] and Francesco Ranzato[0000−0003−0159−0068]

Dipartimento di Matematica, University of Padova, Italy

Abstract. Local Completeness Logic (LCL) has been put forward as a program
logic for proving both the correctness and incorrectness of program specifica-
tions. LCL is an abstract logic, parameterized by an abstract domain that allows
combining over- and under-approximations of program behaviors. It turns out
that LCL instantiated to the trivial singleton abstraction boils down to O’Hearn
incorrectness logic, which allows us to prove the presence of program bugs. It has
been recently proved that suitable extensions of Kleene algebra with tests (KAT)
allow representing both O’Hearn incorrectness and Hoare correctness program
logics within the same equational framework. In this work, we generalize this
result by showing how KATs extended either with a modal diamond operator or
with a top element are able to represent the local completeness logic LCL. This is
achieved by studying how these extended KATs can be endowed with an abstract
domain so as to define the validity of correctness/incorrectness LCL triples and to
show that the LCL proof system is logically sound and, under some hypotheses,
complete.

Keywords: Local Completeness Logic · Incorrectness Logic · Complete Ab-
stract Interpretation · Kleene Algebra with Tests.

1 Introduction

Kleene algebra [7] with tests (KAT) [17] allows an equational reasoning on programs
and their properties. Programs are modeled as elements of a KAT, so that their prop-
erties can be algebraically derived through the general equational theory of KATs.
KATs feature sound, complete, and decidable equational theories and have found suc-
cessful applications in several different contexts, most notably in network program-
ming [1,2,12,30,31]. The foundational study of Kozen [18] has shown that the reason-
ing of Hoare correctness logic [16] can be encoded and formulated equationally within
a KAT. Later work by Desharnais, Möller and Struth [10, 24] extended KAT with a do-
main (KAD) to express the modal operators of propositional dynamic logic [11], thus
enabling a more natural way of reasoning through a map from actions to propositions.
The expressive power of KAD has been recently substantiated by Möller, O’Hearn
and Hoare [23], who have shown how to encode both Hoare [16] correctness and
O’Hearn [25] incorrectness program logics in a unique class of KAD where a backward
diamond modality is exploited to encode strongest postconditions. Furthermore, very
recently, Zhang, De Amorim and Gaboardi [33, Theorem 1] have shown that O’Hearn
incorrectness logic cannot be formulated within a conventional KAT, but, at the same
time, a full fledged modal KAT is not needed. In fact, [33] proves that a KAT including

a greatest element, called TopKAT, is capable to encode both Hoare and O’Hearn logic
in a purely equational fashion. Moreover, [33] provides a PSPACE algorithm to decide
TopKAT equality, based on a reduction to Cohen et al. [6]’s algorithm for KAT.

This stream of works made it possible to reason equationally on both program cor-
rectness and incorrectness in the same algebraic framework. For example, in the KAD
framework where a backward diamond modality 〈a|p plays the role of strongest post-
condition of a KAT element a (viz., a program) for a KAT test p (viz., a precondi-
tion), the validity of a Hoare correctness triple {p} a {q} is determined by the inequality
〈a|p ≤ q, while the validity of an O’Hearn incorrectness triple [p] a [q] boils down to
q ≤ 〈a|p. Moreover, if a KAT test s plays the role of specification for a program a and
a Hoare triple {p} a {q} is provable, then a can be proved correct through the inequality
q ≤ s. Vice versa, if [p] a [q] is a provable incorrectness triple, then incorrectness of a
can be verified as q ≤ ¬s.

The Problem. Recently, Bruni et al. [4] put forward a novel program logic, called local
completeness logic LCL, which is parameterized by an abstract domain [8, 9] of pro-
gram stores and simultaneously combines over- and under-approximations of program
behaviours. This program logic leverages the notion of locally complete abstract inter-
pretation, meaning that the abstract interpretation of atomic program commands, such
as variable assignments and Boolean guards, is complete (i.e. with no false alarm) lo-
cally on the preconditions, as opposed to standard completeness [13,29] which must be
satisfied globally for all the preconditions. While a global completeness program logic
was proposed in [14], Bruni et al. [4] design a proof system for inferring that a program
analysis is locally complete. It turns out [4, Section VI] that the instantiation of this
LCL program logic to the trivial store abstraction with a unique “don’t know” value ab-
stracting any concrete store property, boils down to O’Hearn incorrectness logic [25].
Moreover, Bruni et al. [5] also show that abstract interpretations can be made locally
complete through minimal domain refinements that repair the lack of local complete-
ness in a given program analysis.

In the original definition of LCL in [4] program properties are represented as ele-
ments of a concrete domain C and program semantics as functions of type C → C.
Although straightforward, this approach determines a specific type of program seman-
tics. Vice versa, by exploiting a KAT, program properties are represented as tests and
programs as generic elements of the KAT. Hence, a KAT based formulation becomes
agnostic w.r.t. the underlying semantics and can therefore admit multiple different mod-
els of computation (e.g., trace-based semantics, or even models not related to program
semantics as shown by the language-theoretic example in Section 3.5). Furthermore,
KAT is a particularly suitable formalism for compositionally reasoning on programs
as all its basic composition operations on programs (concatenation, choice and Kleene
iteration) are directly modeled within the algebra: this allows us to represent composite
programs and tests as elements of the KAT and, in particular, to check for their equality
and inclusion directly in the algebra. Thus, following the KAT-based model of incor-
rectness logic advocated by Möller, O’Hearn and Hoare [23], this paper pushes forward
this line of work by studying an algebraic formulation of LCL program logic, with the
objective of showing that there is no need to leverage particular semantic properties of
programs to reason on their local completeness.

2

Contributions. In this work, we show that the local completeness logic LCL can be
made fully algebraic in a suitable KAT, yet preserving all its noteworthy logical prop-
erties proved in [4]. For this purpose we show that:

– Our proof systems are logically sound and complete (likewise [4], completeness
needs some additional hypotheses).

– By instantiating the algebraic version of the LCL logic to the trivial domain ab-
stracting any concrete value to “don’t know” we exactly obtain O’Hearn incorrect-
ness program logic [25], thus retrieving its logical soundness and completeness as
consequences of our results.

– Triples of O’Hearn incorrectness logic carry two postconditions, corresponding to
normal and erroneous program termination. While the original local completeness
logic LCL in [4] only considers normal termination, we propose a generalization
that also supports erroneous termination. Moreover, we use the KAD construction
of [23] to generalize our logical soundness and completeness results to incorrect-
ness triples.

In particular, we study two different formulations of LCL given: (1) in a KAD, the
KAT model used in [23], and (2) in a TopKAT, the KAT model employed in [33]. In
both frameworks, we put forward a suitable notion of abstract domain of KAT that, cor-
respondingly, induces a sound abstract semantics for KAT programs (i.e., KAT terms).
Our local completeness logic on KAT, called LCK, turns out to be logically sound w.r.t.
this abstract semantics, meaning that a provable LCK triple [p] a [q] for an abstract
domain A on a KAT K satisfies:

(i) q is below the strongest postcondition in K of the program term a for the precon-
dition p;

(ii) the program term a is locally complete for the precondition p in the abstract do-
main A;

(iii) the approximations inA of q and of the strongest postcondition of a for p coincide.

The proofs of all the results have been omitted and can be found in the full version
of the paper [22].

2 Background on Kleene Algebra with Tests

A Kleene algebra with tests (KAT) is a purely algebraic structure that provides an ele-
gant equational framework for program reasoning. A KAT consists of actions, playing
the role of programs, and tests, interpreted as pre/postconditions and Boolean guards.
KAT elements can be combined with three basic operations: nondeterministic choice
a1 + a2, sequential composition a1; a2, and Kleene iteration a∗. A standard model of
KAT used to represent computations is the relational model, in which KAT elements are
binary relations on some set, thus modeling programs as a relation between input and
output states. Further models of KAT include regular languages over a finite alphabet,
square matrices over another Kleene algebra, and Kleene algebra modulo theories [15].
In the following, we briefly recall some basics of KAT. For more details, the reader is
referred to [7, 10, 17].

3

An idempotent-semiring (i-semiring) is a tuple (A,+, ·, 0, 1) where: (1) (A,+, 0)
is a commutative monoid with an idempotent addition, i.e., for all a ∈ A, a + a = a;
(2) (A, ·, 1) is a monoid, where the multiplication symbol · is often omitted, such that,
for any a ∈ A, 0 · a = a · 0; (3) multiplication distributes over addition (in both
arguments). In an i-semiring A, the relation a ≤ b

M⇔ a + b = b is a partial order,
referred to as the natural ordering, that we will implicitly use throughout the paper.
Note that the addition + is the join w.r.t. this natural ordering.

A test-semiring is a tuple (A, test(A),+, ·,¬, 0, 1) where: (1) (A,+, ·, 0, 1) is an
i-semiring; (2) test(A) ⊆ A, and (test(A),∨,∧,¬, 0, 1) is a Boolean subalgebra of A
with greatest element 1 and least element 0, complement ¬, where the meet ∧ and join
∨ of the Boolean algebra test(A) coincide, resp., with multiplication · and addition +.

A Kleene algebra is a tuple (K,+, ·, ∗, 0, 1) where: (1) (K,+, ·, 0, 1) is an i-semi-
ring; (2) (·)∗ : K → K is a unary operation, called Kleene star or iteration, satisfying
the following conditions:

1 + aa∗ ≤ a∗ 1 + a∗a ≤ a∗ (∗-unfold)
b+ ac ≤ c⇒ a∗b ≤ c b+ ca ≤ c⇒ ba∗ ≤ c (∗-induction)

Definition 2.1 (KAT [17]). A Kleene algebra with tests (KAT) is a two-sorted algebra
(K, test(K), +, ·, ∗, ¬, 0, 1) such that (K, test(K),+, ·,¬, 0, 1) is a test-semiring and
(K,+, ·, ∗, 0, 1) is a Kleene algebra.
A KAT K is countably-test-complete (CTC) if any countable subset of test(K) admits
least upper bound (lub).
A KAT is ∗-continuous, referred to as KAT∗, if it satisfies the following condition:
for all a, b, c ∈ K, ab∗c =

∨
n∈N ab

nc (this equation implicitly assumes that the lub∨
n∈N ab

nc, w.r.t. the natural ordering of K, exists). ut

A relational KAT [19] on a carrier set X is determined by a set K ⊆ ℘(X × X)
of binary relations on X with tests test(K) ⊆ ℘({(x, x) | x ∈ X}), where addition
is union, multiplication is composition of relations, the additive identity is the empty
relation, the multiplicative identity is {(x, x) | x ∈ X}, the Kleene star is the reflexive-
transitive closure, and test complement is set complementation w.r.t. the multiplicative
identity.

Informally, a backward diamond 〈 · | · on a KAT allows us to compute strongest
postconditions of programs, that is, 〈a|p can be interpreted as post[a]p.

Definition 2.2 (bdKAT [23]). A backward-diamond KAT (bdKAT) is a two-sorted al-
gebra (K, test(K),+, ·, ∗,¬, 0, 1, 〈|) such that:

(1) (K, test(K),+, ·, ∗,¬, 0, 1) is a KAT;
(2) 〈 · | · : K → (test(K) → test(K)) is a backward-diamond operator satisfying the

following conditions: for all a, b ∈ K and p, q ∈ test(K),

〈a|p ≤ q ⇔ pa ≤ aq (bd1)
〈ab|p = 〈b|(〈a|p) (bd2)

ut

4

The axiom (bd1) is equivalent to requiring that 〈a|p is the least test in K satisfying
pa ≤ aq (the original definition of Kleene algebra with domain in [10] is of this form).
Moreover, pa ≤ aq in (bd1) is equivalent to pa = paq (see [10, Lemma 3.4]).

Definition 2.3 (TopKAT [21]). A KAT with top (TopKAT) is a KAT K that contains a
largest element > ∈ K, that is, for all a ∈ K, a ≤ >. ut

3 Local Completeness Logic in KAT

We investigate how the local completeness program logic LCL [4] can be interpreted
on a KAT. To achieve this, we need to address the following tasks:

– To define a notion of abstract domain of a KAT, with the aim of abstracting the set
of program predicates, namely tests of a KAT;

– To establish a concrete semantics and a corresponding sound abstract semantics of
programs on KATs;

– To adapt the local completeness proof system to attain valid triples on a KAT;
– To prove logical soundness and completeness w.r.t. a KAT of this new proof system.

3.1 Program Properties in KAT

Program properties can be broadly classified as intensional and extensional. The former
relate to how programs are written, while the latter concern the input-output relation of
a program, i.e., its strongest postcondition denotational semantics. Local completeness
logic LCL relies on an abstract interpretation of programs which crucially depends
on intensional properties of programs, meaning that even if two programs share the
same denotation, they could well have different abstract semantics. Thus, we expect
that an appropriate definition of abstract semantics based on a KAT model should also
be intensional. Given two elements a and b of a modal bdKAT playing the role of
programs, we therefore expect that their backward diamond functions might coincide,
i.e. 〈a| = 〈b|, even if a and b encode different programs, i.e. a 6= b. However, as shown
by the following remark for the basic relational model of KAT, it might happen that for
certain classes of KAT models the backward diamond interpretation is injective.

Proposition 3.1. Let K be a relational KAT on a set X where test(K) = ℘({(x, x) |
x ∈ X}). Then, for all a, b ∈ K, 〈a| = 〈b| ⇔ a = b.

This means that, at least for some fundamental KAT models, KAT elements are
equal iff they are extensionally equal, or, equivalently, they carry exclusively exten-
sional program properties. In this case, when a program is encoded with a KAT element
all the intensional properties are lost and it is indistinguishable from any other pro-
gram with the same denotational semantics. Therefore, an abstract interpretation-based
semantics can not be defined directly on KAT elements.

5

3.2 KAT Language

As a consequence of the discussion in Section 3.1, the concrete semantics cannot be
directly defined on KAT elements. A solution is to define it on an inductive language.
Actually, in a language of programs, two elements are equal iff they are syntactically
equal, or, in other terms, if the corresponding programs are written in the same way.
This property makes a language an ideal basis upon which a semantics can be defined,
because this brings the chance of depending on intensional properties.

A natural choice for defining this language of programs is the so-called KAT lan-
guage, as originally defined by Kozen and Smith [19, Section 2.3], because it contains
all and only the operators of a KAT, so that the interpretation of language terms as KAT
elements is the most natural one. This language is inductively defined from two disjoint
sets of primitive actions and tests through the basic elements/operations 0, 1,+, ·,∗ of
KATs. More precisely, given a set Σ of primitive actions and a set B of primitive tests
such that Σ ∩ B = ∅, the corresponding KAT language TΣ,B of terms is defined as
follows:

Atom 3 a ::= a ∈ Σ | p ∈ B

TΣ,B 3 t ::= a | 0 | 1 | t1 + t2 | t1 · t2 | t∗

For simplicity, we assume that 0 and 1 are primitive tests inB, so that 0, 1 ∈ Atom. The
notation Atom(t) ⊆ Atom will denote the set of atoms occurring in a term t ∈ TΣ,B .
Notice that a KAT language TΣ,B is an equivalent representation of the language of
regular commands used in [4, 25] for their program logics.

Given a KAT K, an evaluation of atoms in K is a mapping u : Atom → K such
that p ∈ B ⇒ u(p) ∈ test(K). An evaluation u induces an interpretation of terms
J·Ku : TΣ,B → K, which is inductively defined as expected:

JaKu , u(a) Jt1 + t2Ku , Jt1Ku + Jt2Ku
Jt1 · t2Ku , Jt1Ku · Jt2Ku Jt∗Ku , JtK∗u

In turn, the concrete semantic function

J·KK : TΣ,B →
(
test(K)→ test(K)

)
models the strongest postcondition of a program, i.e. of a language term, for a given
precondition, i.e. a KAT test. This is therefore defined in terms of the backward diamond
of a bdKAT as follows:

JtKKp , 〈JtKu|p. (1)

We will often use JtK to denote a concrete semantics, by omitting the superscript K
when it is clear from the context.

3.3 Kleene Abstractions

An abstract domain is used in abstract interpretation for approximating store properties,
i.e., sets of program stores form the concrete domain, likewise in our KAT model, the
role of concrete domain is played by the set of tests test(K) of a KAT K, ordered by
the natural ordering induced by K.

6

Definition 3.2 (Kleene Abstract Domain). A poset (A,≤A) is a Kleene abstract do-
main of a bdKAT K if:

(i) There exists a Galois insertion, defined by a concretization map γ : A→ test(K)
and an abstraction map α : test(K) → A, of the poset (A,≤A) into the poset
(test(K),≤K);

(ii) A is countably-complete, i.e., any countable subset of A admits a lub. ut

The abstract semantic function J·K]A : TΣ,B → (A → A) defines how abstract pre-
conditions are transformed into abstract postconditions. Likewise store-based abstract
interpretation, this abstract semantics is inductively defined as follows:

JaK]Ap
] , α(JaKKγ(p])) Jt1 + t2K

]
Ap

] , Jt1K
]
Ap

] + Jt2K
]
Ap

]

Jt1 · t2K]Ap
] , Jt2K

]
A(Jt1K

]
Ap

]) Jt∗K]Ap
] ,

∨
n∈N(JtK

]
A)
np]

(2)

It is worth remarking that condition (ii) of Definition 3.2 ensures that the abstract
semantics of the Kleene star in (2) is well defined. It turns out that J·K]A is a sound (and
monotonic) abstract semantics.

Theorem 3.3 (Soundness of bdKAT Abstract Semantics). Let A be a Kleene ab-
straction of a CTC bdKAT K and TΣ,B be a language interpreted on K. For all
p], q] ∈ A, p ∈ test(K), and t ∈ TΣ,B:

p] ≤A q] ⇒ JtK]Ap
] ≤A JtK]Aq

] (monotonicity)

α(JtKKp) ≤A JtK]Aα(p) (soundness)

3.4 Local Completeness Logic on bdKAT

Given a Kleene abstract domain A, we will slightly abuse notation by using

A , γ ◦ α : test(K)→ test(K)

as a function (indeed, this is the upper closure operator on tests induced by the Galois
insertion defining A). Let us recall the notions of global vs. local completeness. If f :
test(K)→ test(K) is any test transformer then:

– A is globally complete for f , denoted CA(f), iff A ◦ f = A ◦ f ◦ A;
– A is locally complete for f on a concrete test p ∈ test(K), denoted CAp (f), iff
A ◦ f(p) = A ◦ f ◦ A(p).

It is known [14] that global completeness is hard to achieve in practice, even for
simple programs. Moreover, a complete and compositional (i.e., inductively defined on
program structure) abstract interpretation is even harder to design [3]. This motivated
to study a local notion of completeness in abstract interpretation [4] as a pragmatic and
more attainable weakening of standard global completeness.

In our local completeness logic on a Kleene algebra, a triple [p] t [q], where p and
q are tests and t is a language term, will be valid when:

7

a ∈ Σ ∪B CA
p (JaK)

(transfer)
`K
A [p] a [JaKp]

p′ ≤ p ≤A(p′) `K
A [p′] t [q′] q ≤ q′ ≤A(q′)

(relax)
`K
A [p] t [q]

`K
A [p] t1 [r] `K

A [r] t2 [q]
(seq)

`K
A [p] t1 · t2 [q]

`K
A [p] t1 [q1] `K

A [p] t2 [q2]
(join)

`K
A [p] t1 + t2 [q1 + q2]

`K
A [p] t [r] `K

A [p+ r] t∗ [q]
(rec)

`K
A [p] t∗ [q]

`K
A [p] t [q] q ≤ A(p)

(iterate)
`K
A [p] t∗ [p+ q]

Fig. 1. Proof system LCKA.

(1) q is an under-approximation of the concrete semantics of t from a precondition p;
(2) A is locally complete for JtK on the precondition p;
(3) q and JtKp have the same over-approximation in A.

Definition 3.4 (Triple Validity). LetK a CTC bdKAT,A be a Kleene abstraction ofK,
and TΣ,B be a KAT language interpreted on K. For all p, q ∈ test(K) and t ∈ TΣ,B ,
a triple [p] t [q] is valid in A, denoted by |=K

A [p] t [q], if

(i) q ≤K JtKKp;
(ii) JtK]Aα(p) = α(q) = α(JtKKp). ut

The local completeness proof system in [4] can be adapted to our algebraic frame-
work, yielding the set of rules denoted by LCKA in Figure 1. The only syntactic differ-
ence concerns the usage of elements of test(K) as pre/postconditions and the language
of terms TΣ,B playing the role of programs.

It turns out that the logic LCKA is logically sound (we use “logical” soundness to
avoid overloading the soundness of abstract semantics).

Theorem 3.5 (Logical Soundness of `K

A). If `K

A [p] t [q] then

(i) q ≤K JtKp;
(ii) JtK]Aα(p) = α(q) = α(JtKp).

Analogously to what happens for LCL, we can prove that LCKA is logically com-
plete under these two additional hypotheses:

(A) The following infinitary rule is added to LCKA:

∀n ∈ N. `K

A [pn] t [pn+1] (limit)
`K

A [p0] t
∗ [
∨
n∈N pn]

Let us point out that the lub
∨
n∈N pn always exists in K, as a consequence of the

CTC requirement on K.

8

(B) The concrete semantics of the primitive actions and tests occurring in the program
are globally complete.

It can be proved that the rule (limit) preserves logical soundness (see the full ver-
sion [22]).

Theorem 3.6 (Logical Completeness of `K

A). Assume that conditions (A) and (B)
hold. If |=K

A [p] t [q] then `K

A [p] t [q].

Summing up, this shows that the local completeness logic LCL introduced in [4]
can be made fully algebraic by means of a natural interpretation on modal KATs with
a backward diamond operator, still preserving its logical soundness and completeness,
which are proved by using just the algebraic axioms of this class of KATs. Hence, this
shows that there is no need to leverage particular semantic properties of programs to
reason on their local completeness.

3.5 An Example of a Language-Theoretic KAT

To give an example digressing from programs and showing the generality of the KAT-
based approach, we describe a language-theoretic model of Kleene algebra, early intro-
duced by Kozen and Smith [19, Section 3].

Let Σ = {u} and B = {b1, b2} be, resp., the sets of primitive actions and tests. An
atom is a string c1c2, where ci ∈ {bi, bi}. If ci = bi, where i ∈ {1, 2}, then bi appears
positively in the atom c1c2, while if ci = bi it appears negatively. A guarded string
is either a single atom or a string α0a1α1...anαn, where αi are atoms and ai ∈ Σ. If
we are only interested in the first (last) atom of a guarded string αa1α1...anβ, we may
refer to it through the syntax αx (xβ). Concatenation of guarded strings is given by a
coalesced product operation �, which is partially defined as follows:

xα � βy ,

{
xαy if α = β

undefined otherwise

The elements of this KAT G are sets of guarded strings. Thus, + is set union, the product
is defined as pointwise coalesced product:

A ·B , {x � y | x ∈ A, y ∈ B},

while the Kleene iteration is: A∗ ,
⋃
n∈NA

n. The product identity corresponds to the
whole set of atoms 1G , {b1b2, b1b2, b1b2, b1b2}, while 0G is the empty set. The set
of tests is test(G) , ℘(1G).

It turns out that G is a bdKAT, whose backward diamond is as follows: for all a ∈ G
and p ∈ test(G),

〈a|p = {β | xβ ∈ pa}. (3)

Proof. Let r = {β | xβ ∈ pa}. It can be proved (see the full version [22]) that in a
bdKAT K, for all p ∈ test(K) and a ∈ K, (bd1) holds iff 〈a|p is the least (w.r.t. the
natural ordering) q ∈ test(K) such that pa = paq. Therefore, it is enough to show that
r is the least q ∈ test(G) satisfying pa = paq.

9

Let xβ ∈ pa. By definition, β ∈ r means that xβ � β = xβ is contained in par. This
therefore means that pa ≤ par. The opposite inequality is trivial since r is a test, hence
r ≤ 1G , and by monotonicity of ·, we have that pa ≥ par, thus implying pa = par.
Assume now, by contradiction, that there exists t ∈ test(G) such that pa = pat, t ≤ r
and t 6= r. This means that there is at least an atom β in r which is not in t. By definition
of r, there is a guarded string xβ ∈ pa. Since pa = pat, the last atom of all the guarded
strings in pa must be in t, but this does not hold for xβ as β /∈ t. ut

Let us consider the evaluation function G : Atom→ G as defined in [19]:

G(a) , {αaβ | α, β ∈ 1G},
G(b) , {α ∈ 1G | b appears positively in α}.

We consider the abstract domain A , {>, e, o,⊥} determined by the following
abstraction α : test(G)→ A and concretization γ : A→ test(G) maps:

α(p) ,

⊥ if p = ∅
e if ∅ (p ⊆ {b1b2, b1b2}
o if ∅ (p ⊆ {b1b2, b1b2}
> otherwise

γ(p]) ,

∅ if p] = ⊥
{b1b2, b1b2} if p] = e

{b1b2, b1b2} if p] = o

1G if p] = >

By counting, in an atom, the number of primitive tests that appear positively we ob-
tain an integer that may be even or odd. Hence, this abstract domain A represents the
property of being even e or odd o of all the atoms occurring in a test p ∈ test(G).

By using our logic LCK, we study the correctness of the program r , (u · b1)∗ ∈
G, assuming a precondition p , {b1b2, b1b2} ∈ test(G) and a specification Spec ,
p = γ(e). Let us define two auxiliary tests: q , {b1b2, b1b2}, s , {b1b2, b1b2, b1b2}.
Using the equation (3), we can easily check the following local completeness equations:

α(JuKA(s)) = α(JuK1G) = α(1G) = > = α(1G) = α(JuKs) ⇒ CAs (JuK)
α(JuKA(p)) = α(JuKp) = α(1G) = > = α(1G) = α(JuKp) ⇒ CAp (JuK)
α(Jb1KA(1G)) = α(Jb1K1G) = α(q) = > = α(q) = α(Jb1K1G) ⇒ CA1G (Jb1K)

Therefore, we have the following derivation in LCKA of the triple [p] r [s]:

CAp (JuK)
(transfer)

`K

A [p] u [1G]

CA1G (Jb1K) (transfer)
`K

A [1G] b1 [q]
(seq)

`K

A [p] u · b1 [q]

CAs (JuK) (transfer)
`K

A [s] u [1G]

CA1G (Jb1K) (transfer)
`K

A [1G] b1 [q]
(seq)

`K

A [s] u · b1 [q] q ≤ A(s)
(iterate)

`K

A [s] (u · b1)∗ [s] (rec)
`K

A [p] (u · b1)∗ [s]

Here, in accordance with the soundness Theorem 3.5, we have that s ⊆ JrKp ⊆
A(s). Observe that A(s) * Spec holds, meaning that an abstract interpretation-based
analysis fails to prove that the program r is correct for Spec. However, unlike con-
ventional abstract interpretation, LCKA is capable to show that s r Spec = {b1b2}
is indeed a true alert, meaning that the program r is really incorrect and the failure to
prove its correctness was not due to a false alarm.

10

a ∈ Atom (transfer)
`UL [p] a [JaKp]

(empty)
`UL [p] t [0]

p′ ≤ p `UL [p′] t [q′] q ≤ q′
(consequence)

`UL [p] t [q]

`UL [p1] t [q1] `UL [p2] t [q2]
(disj)

`UL [p1 + p2] t [q1 + q2]

`UL [p] t1 [r] `UL [r] t2 [q]
(seq)

`UL [p] t1 · t2 [q]

(iterate zero)
`UL [p] t∗ [p]

`UL [p] t∗ · t [q]
(iterate non-zero)

`UL [p] t∗ [q]

∀n ∈ N. `UL [pn] t [pn+1]
(back-v)

`UL [p0] t
∗ [

∨
n∈N pn]

`UL [p] ti [q], with i = 1 or i = 2
(choice)

`UL [p] t1 + t2 [q]

Fig. 2. Proof System UL.

3.6 Under-Approximation Logic

O’Hearn [25] incorrectness logic (IL) establishes two main novelties w.r.t. the seminal
Hoare logic of program correctness [16]: (1) a valid postcondition of an incorrectness
triple for a program P is an under-approximation of the strongest postcondition of
P , rather than an over-approximation of Hoare logic; (2) incorrectness triples feature
two postconditions: one corresponding to a “normal” program termination and one cor-
responding to an erroneous termination. Even if IL was originally defined with both
those features, we first neglect the second one — i.e., we consider “normal” termina-
tion only — and we refer to the resulting program logic as Under-approximation Logic,
denoted by UL. For the sake of clarity, Figure 2 recalls the UL proof system, adapted to
our algebraic framework. We only focus on the “propositional” fragment of this logic,
meaning that the roles of all the special program commands (i.e., error, assume, skip,
nondet used in [25]) and variable manipulations commands of incorrectness logic are
played by some corresponding elements in Atom. Hence, for all of them, the single rule
(transfer) is unifying and enough for our purposes.

Analogously to what has been proved in [4, Section 6] for LCL, it turns out that
the trivial abstraction, i.e., the abstract domain Atr , {>} that approximates all the
concrete elements to a single abstract element>, allows us to show that the instantiation
LCKAtr

, with the additional rule (limit), boils down to UL, namely, our LCK logic
generalizes UL, even when both are interpreted on KATs.

Theorem 3.7 (LCKAtr
≡ UL). Let K be a CTC bdKAT. Assume that LCKAtr

in-
cludes the rule (limit). For any p, q ∈ test(K) and t ∈ TΣ,B:

`K

Atr
[p] t [q] ⇔ `UL [p] t [q].

Moreover, since the abstraction map defining Atr is αAtr
= λx.>, we have that

condition (ii) of Definition 3.4 for the validity of a LCK triple trivially holds, that is,

11

JtK]Aα(p) = > = α(q) = α(JtKKp). This therefore entails that

|=K

Atr
[p] t [q] ⇔ |=UL [p] t [q]. (4)

This allows us to retrieve the soundness and completeness results of incorrectness
logic [25] as a consequence of those for LCK.

Corollary 3.8. Under the same hypotheses of Theorem 3.7, the proof system UL is
sound and complete, that is, `UL [p] t [q] ⇔ |=UL [p] t [q].

4 Incorrectness Logic in KAT

Incorrectness logic IL has been introduced by O’Hearn [25] as a natural under-approxi-
mating counterpart of the pivotal Hoare correctness logic [16], and quickly attracted a
lot of research interest [20,26,27,28,32]. Incorrectness logic distinguishes two postcon-
ditions corresponding to normal and erroneous/abnormal program termination. Here,
we generalize the algebraic formulation of our LCK logic to support abnormal ter-
mination. We follow the approach of Möller, O’Hearn and Hoare [23], namely, each
language term is interpreted as a pair of KAT elements which model the normal and
abnormal execution. The evaluation function has type u : Atom → (K × K), while
the interpretation function has type J·Ku : TΣ,B → (K ×K). As a shorthand J·Ku can
be subscripted with ok or err to denote, resp., its first normal and second erroneous
component. The definition is as follows:

JaKu , u(a)

Jt1 + t2Ku , (Jt1Kuok + Jt2Kuok , Jt1Kuerr + Jt2Kuerr)

Jt1 · t2Ku , (Jt1Kuok · Jt2Kuok , Jt1Kuerr + Jt1Kuok · Jt2Kuerr)

Jt∗Ku , (JtK∗uok
, JtK∗uok

· JtKuerr)

(5)

Following the original definition of IL, the precondition encodes an ok condition only,
while the postcondition contains both an ok and an err component. Hence, the latter is
given by a pair (p, q) ∈ test(K) × test(K), typically denoted by ok : p, err : q. The
concrete semantics J·K : TΣ,B → (test(K)→ (test(K)× test(K))) is defined as

JtKp , ok : 〈JtKuok |p, err : 〈JtKuerr |p

To refer to one of its components, J·K can be subscripted with ok or err , e.g., JtKok p.
Given a Kleene abstract domain A on K, the corresponding abstract semantics

J·K]A : TΣ,B → (A→ (A×A)) is defined as follows:

JaK]Ap
] , ok : α(JaKok γ(p

])), err : α(JaKerr γ(p
]))

Jt1 + t2K
]
Ap

] , ok : Jt1K
]
Aok

p] + Jt2K
]
Aok

p], err : Jt1K
]
Aerr

p] + Jt2K
]
Aerr

p]

Jt1 · t2K]Ap
] , ok : Jt2K

]
Aok

(Jt1K
]
Aok

p]), err : Jt1K
]
Aerr

p] + Jt2K
]
Aerr

(Jt1K
]
Aok

p])

Jt∗K]Ap
] , ok :

∨
n∈N(JtK

]
Aok

)np], err : JtK]Aerr

∨
n∈N(JtK

]
Aok

)np]

(6)

12

The ok part coincides with the semantics of LCK, while the err component puts in
place some differences. In particular, the composition exhibits a short-circuiting behav-
ior, meaning that an error in the first command aborts the execution without executing
the second one, while the Kleene star allows an error to occur after some error-free iter-
ations. It is straightforward to check that this definition of abstract semantics is mono-
tonic and sound.

The proof system LCK can be extended with incorrectness triples. In particular, a
triple [p] t [ok : q][err : r] is valid if the standard validity conditions hold for both ok
and err .

Definition 4.1 (Incorrectness Triple). Let K be a CTC bdKAT K and TΣ,B be a lan-
guage interpreted onK. An incorrectness triple is either [p] t [ok : q] or [p] t [err : r],
where p, q, r ∈ test(K) and t ∈ TΣ,B .
Let A be a Kleene abstract domain on K with abstraction map α : test(K)→ A.

– The triple [p] t [ok : q] is valid if: (1) q ≤ JtKok p, and (2) JtK]Aok
α(p) = α(q) =

α(JtKok p).
– The triple [p] t [err : r] is valid if: (1) r ≤ JtKerr p, and (2) JtK]Aerr

α(p) = α(r) =
α(JtKerr p).

– A triple [p] t [ok : q][err : r] is valid when both [p] t [ok : q] and [p] t [err : r]
are valid. In particular, if q = r then the triple [p] t [εεε : q] is valid. ut

The proof system LCILA defining the local completeness incorrectness logic is
given in Figure 3.

Theorem 4.2 (Logical Soundness of LCILA). The triples provable in LCILA are
valid.

Furthermore, it turns out that LCILA is logically complete.

Theorem 4.3 (Logical Completeness of LCILA). Let A be a Kleene abstract do-
main on a CTC bdKAT K and TΣ,B be a language interpreted on K. Assume that the
atoms in t ∈ TΣ,B are globally complete, i.e., for all a ∈ Atom(t), CA(JaKok) and
CA(JaKerr) hold. If [p] t [ok : q][err : r] is valid, then it is provable in LCILA.

Example 4.4. Consider a relational bdKAT K , ℘(Z × Z) on the set of integers Z,
where 1K , {〈z, z〉 | z ∈ Z} and 0K , ∅, and the standard integer interval abstraction
Int [8, 9]. Let us consider a language with primitive actions Σ , {x := x+ 1, err}.
The evaluation function u : Σ ∪B → Kok ×Kerr is defined as expected:

u(x := x+ 1) = ({〈z, z + 1〉 | z ∈ Z}, 0K), u(err) = (0K , 1K).

We study the correctness of the program r ≡ ((x := x+ 1) + err)∗, for the precondi-
tion p , {〈0, 0〉, 〈2, 2〉} and the specification Spec , (ok : {〈z, z〉 | z ≥ 0}, err :
0K). Let us define an auxiliary sequence of tests pn , {〈n, n〉, 〈n+ 2, n+ 2〉} and
s , {〈z, z〉 | z ≥ 0}.

13

a ∈ Atom CA
p (JaKok) CA

p (JaKerr)
(transfer)

`K
A [p] a [ok : JaKok p][err : JaKerr p]

p′ ≤ p ≤ A(p′) `K
A [p′] t [εεε : q′] q ≤ q′ ≤ A(q)

(relax)
`K
A [p] t [εεε : q]

`K
A [p] t1 [ok : r] `K

A [r] t2 [ok : q]
(seq-ok)

`K
A [p] t1 · t2 [ok : q]

`K
A [p] t1 [ok : q][err : r] `K

A [q] t2 [err : s]
(seq-err)

`K
A [p] t1 · t2 [err : r + s]

`K
A [p] t∗ [ok : q] `K

A [q] t [err : r]
(rec-err)

`K
A [p] t∗ [err : r]

`K
A [p] t1 [εεε : q1] `K

A [p] t2 [εεε : q2]
(join)

`K
A [p] t1 + t2 [εεε : q1 + q2]

∀n ∈ N. `K
A [pn] t [ok : pn+1]

(limit)
`K
A [p0] t

∗ [ok :
∨

n∈N pn]

Fig. 3. Proof system LCILA.

We can easily check the local completeness of the atoms by exploiting the following
characterization (see the full version [22]) of the backward diamond operator in a rela-
tional KAT K on a set X where test(K) = ℘({(x, x) | x ∈ X}): for all a ∈ K and
p ∈ test(K),

〈a|p = {(y, y) | ∃x ∈ X. (x, x) ∈ p, (x, y) ∈ a}.
We therefore have the following derivation in LCILInt for r:

CInt
pn (Jx := x+ 1Kok) CInt

pn (Jx := x+ 1Kerr)
(transfer)

`K

Int [pn] x := x+ 1 [ok : pn+1]

CInt
pn (JerrKok) CInt

pn (JerrKerr)
(transfer)

`K

Int [pn] err [ok : 0]
(choice)

`K

Int [pn] (x := x+ 1) + err [ok : pn+1] (limit)†

CInt
s (Jx := x+ 1Kok) CInt

s (Jx := x+ 1Kerr) (transfer)
`K

Int [s] x := x+ 1 [err : 0]

CInt
s (JerrKok) CInt

s (JerrKerr) (transfer)
`K

Int [s] err [err : s]
(choice)‡

†
(limit)

`K

Int [p0] ((x := x+ 1) + err)∗ [ok : s]

‡
(choice)

`K

Int [s] (x := x+ 1) + err [err : s]
(rec-err)

`K

Int [p0] ((x := x+ 1) + err)∗ [err : s]

By soundness of LCILInt in Theorem 4.2, the program r satisfies the ok part of Spec
because

JrKok p ⊆ Int(s) = s ⊆ s = Specok .

However, the err part is not satisfied as Int(s) = s * ∅ = 0K = Specerr . Moreover,
LCILInt also catches true alerts as sr Specerr = s. ut

14

a ∈ Atom (transfer)
`IL [p] a [ok : JaKok p][err : JaKerr p]

(empty)
`IL [p] t [εεε : 0]

p′ ≤ p `IL [p′] t [εεε : q′] q ≤ q′
(consequence)

`IL [p] t [εεε : q]

`IL [p1] t [εεε : q1] `IL [p2] t [εεε : q2]
(disj)

`IL [p1 + p2] t [εεε : q1 + q2]

`IL [p] t1 [err : q]
(short-circuit)

`IL [p] t1 · t2 [err : q]

`IL [p] t1 [ok : r] `IL [r] t2 [εεε : q]
(seq-normal)

`IL [p] t1 · t2 [εεε : q]
(iterate zero)

`IL [p] t∗ [ok : p]

∀n ∈ N. `IL [pn] t [ok : pn+1]
(back-v)

`IL [p0] t
∗ [ok :

∨
n∈N pn]

`IL [p] t∗ · t [εεε : q]
(iterate non-zero)

`IL [p] t∗ [εεε : q]

`IL [p] ti [εεε : q], with i ∈ {1, 2}
(choice)

`IL [p] t1 + t2 [εεε : q]

Fig. 4. Proof system IL.

4.1 Relationship with Incorrectness logic

Section 3.6 has shown that LCK yields a generalization of UL. The same can be done
for IL, i.e., we prove that LCILA with incorrectness triples generalizes the incorrectness
logic of [25]. For the sake of clarity, we recall in Figure 4 an algebraic version of IL.
Analogously to the reduction of Theorem 3.7, this generalization is obtained by letting
A = Atr, where Atr is the trivial abstract domain.

Theorem 4.5. Let K be a CTC bdKAT and TΣ,B a language interpreted on K. For
any p, q ∈ test(K), t ∈ TΣ,B ,

`K

Atr
[p] t [ok : q][err : r] ⇔ `IL [p] t [ok : q][err : r].

The abstraction map α = λx.> ofAtr makes the validity of a triple trivially true. In
particular, JtK]Atrok

α(p) = > = α(q) = α(JtKok p) and JtK]Atr err
α(p) = > = α(q) =

α(JtKerr p) hold. As a consequence, we obtain that

|=K

Atr
[p] t [ok : q][err : r] ⇔ |=IL [p] t [ok : q][err : r] (7)

By this equivalence (7) and Theorems 4.2 and 4.3, we can thus retrieve the logical
soundness and completeness of IL as a consequence of the one of LCILAtr .

Corollary 4.6. LetK be a CTC bdKAT and TΣ,B a language interpreted onK. For any
p, q ∈ test(K), t ∈ TΣ,B , `IL [p] t [ok : q][err : r] ⇔ |=IL [p] t [ok : q][err : r].

5 Local Completeness Logic in TopKAT

We have shown in Section 3 how KAT extended with a modal backward-diamond
operator allows us to interpret and represent the local completeness program logic.

15

This result follows the approach by Moller, O’Hearn and Hoare [23], who leverage
a backward-diamond operator in their KAT interpretation of correctness/incorrectness
logics. On the other hand, Zhang, de Amorim and Gaboardi [33] have recently shown
that incorrectness logic can be formulated for a standard KAT, provided that it contains
a top element, thus giving rise to a so-called TopKAT. In particular, [33] observed that a
TopKAT is enough to express the codomain of relational KATs. In this section, we take
a similar path in studying an alternative formulation of local completeness logic based
on a TopKAT.

5.1 Abstracting TopKATs

We expect that the base case of abstract semantics JaK]Ap
] for a basic action a ∈ Atom

is defined as best correct approximation in A of the concrete semantics of a on the
concretization of p]. In a bdKAT this is achieved in definition (2) through its backward-
diamond operator, which is crucially used in (1) to define the strongest postcondition
as JaKKγ(p]) = 〈JaKu|γ(p]). Zhang et al. [33] observed that in a relational model of
KAT, the codomain inclusion cod(q) ⊆ cod(pa) defining the meaning of an under-
approximation triple [p] a [q] can be expressed in a TopKAT as the inequality >q ≤
>pa, thus hinting that this latter condition could be taken as definition of validity of
incorrectness triples in a TopKAT. We follow here a similar approach by considering
the element >pJaKu as a proxy for strongest postconditions in a TopKAT. It is worth
noticing that while in a bdKAT a strongest postcondition 〈JaKu|p is always a test, in a
TopKAT K, given p ∈ test(K) and a term t ∈ TΣ,B , it is not guaranteed that there
exists a test q ∈ test(K) such that >pJtKu = >q, as shown by the following example.

Example 5.1 (Strongest Postconditions in TopKAT). Consider the Kleene algebra
A3 = {0, 1, a} consisting of 3 elements and characterized by Conway [7, Chapter 12].
This algebra can be lifted to a KAT by letting test(A3) , {0, 1} and defining the KAT
operators as follows:

+ 0 1 a
0 0 1 a
1 1 1 1
a a 1 a

· 0 1 a
0 0 0 0
1 0 1 a
a 0 a 0

0∗ , 1 1∗ , 1 a∗ , 1

We have that 1 ≥ a and 1 ≥ 0, because 1 + a = 1 and 1 + 0 = 1, so that A3 is a
TopKAT with > = 1. Moreover, > · 1 · a = 1 · 1 · a = a, whereas there exists no
q ∈ test(A3) satisfying>· q = a. Indeed,>·1 = 1 ·1 = 1 6= a and>·0 = 0 6= a. ut

In general, the lack of such a q ∈ test(K) implies that the abstract domain cannot
be defined as an abstraction of the set of topped-tests {>p | p ∈ test(K)}, because
in this case we could miss the abstraction α(>pJaKu). To settle this issue, an abstract
domain must provide an approximation of the larger set

top(K) , {>a | a ∈ K}

which contains all the multiplicative elements of type >a.

16

Definition 5.2 (Top Kleene Abstract Domain). A poset (A,≤) is a top Kleene ab-
stract domain of a TopKAT K if:

(i) There exists a Galois insertion, defined by γ : A→ top(K) and α : top(K)→ A,
of the poset (A,≤A) into the poset (top(K),≤K);

(ii) A is countably-complete. ut

The abstract semantic function J·K]A : TΣ,B → (A → A) on a top Kleene abstrac-
tion A can be therefore defined for the base case a ∈ Atom as

JaK]Ap
] , α(γ(p])JaKu),

while the remaining inductive cases are defined as in (2) for Kleene abstractions. The
monotonicity and soundness properties of this abstract semantics hold, provided that
the TopKAT is ∗-continuous1, which is referred to as TopKAT∗.

Theorem 5.3 (Soundness of TopKAT Abstract Semantics). Let A be a Kleene ab-
straction of a TopKAT∗K and TΣ,B be a language interpreted onK. For all p], q] ∈ A,
a ∈ K and t ∈ TΣ,B:

p] ≤A q] ⇒ JtK]Ap
] ≤A JtK]Aq

] (monotonicity)

α(>aJtKu) ≤A JtK]Aα(>a) (soundness)

5.2 Local Completeness Logic on TopKAT

Completeness and triple validity are adapted to the TopKAT framework as follows.
Given a Top Kleene abstract domain A on a TopKAT∗ K, A is defined to be locally
complete for a ∈ K on an element b ∈ K, denoted by CAb (a), when

A(>ba) = A(A(>b)a)

holds. Moreover, A is globally complete for a, denoted by CA(a), when it is locally
complete for any b ∈ K.

Likewise, a triple [a] t [b], with a, b ∈ K and t ∈ TΣ,B , is valid, denoted by
|=TK

A [a] t [b], when:

(1) >b ≤ >aJtKu; (2) JtK]Aα(>a) = α(>b) = α(>aJtKu).

The corresponding proof system, denoted by LCTKA, has the same rules of LCKA
in Figure 1 except (transfer), (relax) and (iterate) which are modified as follows:

c ∈ Atom CA
a (JcKu) (transfer)

`TK
A [a] c [aJcKu]

>a′ ≤ >a ≤ A(>a′) `TK
A [a′] t [b′] >b ≤ >b′ ≤ A(>b)

(relax)
`TK
A [a] t [b]

1 This condition plays a role similar to the CTC condition for bdKATs.

17

`TK
A [a] t [b] >b ≤ A(>a)

(iterate)
`TK
A [a] t∗ [a+ b]

This incarnation LCTKA of local completeness logic for TopKAT∗ turns out to be
logically sound and, under additional hypotheses, complete.

Theorem 5.4 (Logical Soundness of `TK

A). If `TK

A [a] t [b] then

(i) >b ≤ >aJtKu;
(ii) JtK]Aα(>a) = α(>b) = α(>aJtKu).

Logical completeness needs the following additional conditions:

(a) Likewise LCKA, the same infinitary rule for Kleene star:

∀n ∈ N. `TK

A [an] t [an+1] (limit)
`TK

A [a0] t
∗ [
∨
n∈N an]

where we assume that:
–
∨
n∈N an always exists. Let us remark that for bdKAT, such explicit condition

was not needed, as it was entailed by the CTC requirement on the KAT.
– > distributes over

∨
n∈N an, i.e., >

∨
n∈N an =

∨
n∈N>an.

It turns out that this additional rule (limit) is sound (see the full version [22]).
(b) Global completeness of all the primitive actions and tests occurring in the program.

Theorem 5.5 (Logical Completeness of `TK

A). Assume that conditions (a) and (b)
hold. If |=TK

A [a] t [b] then `TK

A [a] t [b].

Let us describe an example of derivation in LCTKA.

Example 5.6. Consider a relational KATK = ℘(Z×Z) on the set of integers Z, where
1K , {(z, z) | z ∈ Z} and 0K , ∅. Notice that Z × Z ∈ K is the top element >
of K, meaning that K is a TopKAT. Let us consider a language with primitive actions
Σ = {x := x+ 1} and primitive tests B = {x ≥ 0, x < 0}. The evaluation function
u : Σ ∪B → K is defined as expected by the following relations:

u(x := x+ 1) , {(z, z + 1) | z ∈ Z},
u(x ≥ 0) , {(z, z) | z ∈ Z, z ≥ 0},
u(x < 0) , {(z, z) | z ∈ Z, z < 0}.

Consider the following sign abstraction Sign , {Z,Z≤0,Z6=0,Z≥0,Z<0,Z=0,Z>0,∅}
of ℘(Z), whose abstraction and concretization maps are straightforward. Let us verify
that the program

r ≡
(
(x ≥ 0) · (x := x+ 1)

)∗ · (x < 0)

does not terminate with precondition p , {(0, 0), (10, 10)}, i.e., we prove the specifica-
tion Spec , ∅. Let us define the following auxiliary elements: q , {(1, 1), (11, 11)},
s , p+ q, t≥0 , {(x, z) | x ∈ Z, z ∈ Z≥0}, and observe that Sign(t≥0) = t≥0.

18

The following local completeness conditions for the atoms hold:

α(Sign(>p)Jx ≥ 0Ku) = α(t≥0Jx ≥ 0Ku) = Z≥0 = α(>pJx ≥ 0Ku),
α(Sign(>p)Jx := x+ 1Ku) = α(t≥0Jx := x+ 1Ku) = Z>0 = α(>pJx := x+ 1Ku),

α(Sign(>s)Jx < 0Ku) = α(t≥0Jx < 0Ku) = ∅ = α(>sJx < 0Ku).

Moreover, we also have that:

>q = {(x, z) | x ∈ Z, z ∈ {1, 11}} ≤ t≥0 = Sign(>p).

The following derivation shows that the triple [p] r [0K] is provable in LCTKSign:

CSign
p (Jx ≥ 0Ku)

(transfer)
`TK

Sign [p] x ≥ 0 [p]

CSign
p (Jx := x+ 1Ku)

(transfer)
`TK

Sign [p] x := x+ 1 [q]
(seq)

`TK

Sign [p] (x ≥ 0) · (x := x+ 1) [q] >q ≤ Sign(>p)
(iterate)

`TK

Sign [p]
(
(x ≥ 0) · (x := x+ 1)

)∗
[s]

CSign
s (Jx < 0Ku) (transfer)

`TK

Sign [s] x < 0 [0K]
(seq)

`TK

Sign [p]
(
(x ≥ 0) · (x := x+ 1)

)∗ · (x < 0) [0K]

By Theorem 5.4, we have that >0K ⊆ >pJrKu ⊆ Sign(>0K) = ∅, meaning that the
program does not terminate, and Spec is satisfied as >pJrKu = ∅ = >Spec. ut

5.3 Relationship with Under-Approximation Logic

We have shown in Section 3.6 that the backward-diamond formulation of LCK gener-
alizes UL. The same can be done for the TopKAT formulation. A TopKAT version of
the UL proof system has been already proposed in [33, Figure 6]. The reduction here
considered refers to such system, with the following minor differences:

– We consider only propositional fragments of the logic, meaning that the rules (as-
sume) and (identity) are replaced by the following single (transfer) rule:

c ∈ Atom (transfer)
`UL [a] c [aJcKu]

– The premises of the (consequence) rule in [33, Figure 6], b ≤ b′ and c′ ≤ c,
are relaxed to >b ≤ >b′ and >c′ ≤ >c. Notice that the former implies the latter.
Furthermore, the soundness proof of [33, Theorem 4] is not affected by this change,
because (>b′ ≥ >b ∧ >c ≥ >c′ ∧ >bp ≥ c) ⇒ >b′p ≥ >bp ≥ >c ≥ >c′, and,
by [33, Theorem 3], it holds that >b′p ≥ >c′ entails >b′p ≥ c′.

– The (limit) rules of LCTKA and UL differ on the distributivity condition. We as-
sume that distributivity also holds in UL.

By instantiating to the trivial abstract domain Atr, it turns out that the two proof
systems become equivalent.

Theorem 5.7 (LCTKAtr
≡ UL). Let K be a TopKAT∗. For any a, b ∈ K, t ∈ TΣ,B:

`TK

Atr
[a] t [b] ⇔ `UL [a] t [b].

19

In turn, the logical soundness and completeness of UL can be retrieved as a conse-
quence of those of LCTK.

Corollary 5.8. Under the same hypotheses of Theorem 5.7, the proof system UL is
sound and complete, that is, `UL [p] t [q] ⇔ |=UL [p] t [q].

Finally, let us mention that the full version [22] also shows how to define an incor-
rectness logic in TopKAT.

6 Conclusion

This work has shown that the abstract interpretation-based local completeness logic in-
troduced in [4] can be generalized to and interpreted in Kleene algebra with tests. In
particular, we proved that this can be achieved both for KATs extended with a modal
backward diamond operator playing the role of strongest postcondition, and for KATs
endowed with a top element. Our results generalize both the modal [23] and top [33]
KAT approaches that encode Hoare correctness and O’Hearn incorrectness logic us-
ing different classes of KATs. In particular, our KAT-based logic leverages an abstract
interpretation of KAT, a problem that was not studied so far.

Our plan for future work includes, but is not limited to, the following questions.

– For a KAT with top >, following the technical idea underlying the approach by
Zhang et al. [33], we defined an abstract domain as an approximation of all the
algebraic elements of type > · a, where a is any element of the KAT (cf. Def-
inition 5.2). Although this definition technically works, it is somehow artificial,
because the elements > · a do not carry a clear intuitive meaning. As an interesting
future task, we would like to characterize under which conditions an element > · a
coincides with > · p for some test p ∈ test(K), and if such test p is unique.

– This work is a first step towards an algebraic and equational approach to abstract
interpretation. We envisage that the reasoning made by an abstract interpreter of
programs could be made purely equational within a KAT equipped with a suit-
able collection of axioms. The ambition would be to conceive a notion of abstract
Kleene algebra (AKA) making this slogan true: AKA is for the abstract interpreta-
tion of programs what KAT is for concrete interpretation of programs.

Acknowledgements. Francesco Ranzato has been partially funded by the Italian Min-
istry of University and Research, under the PRIN 2017 project no. 201784YSZ5 “Anal-
ysiS of PRogram Analyses (ASPRA)”, by Facebook Research, under a “Probability and
Programming Research Award”, and by an Amazon Research Award for “AWS Auto-
mated Reasoning”.

References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C., Walker, D.:
NetKAT: Semantic foundations for networks. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. p. 113–126. POPL ’14,
ACM (2014). https://doi.org/10.1145/2535838.2535862

20

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862

2. Beckett, R., Greenberg, M., Walker, D.: Temporal NetKAT. In: Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016.
pp. 386–401. ACM (2016). https://doi.org/10.1145/2908080.2908108

3. Bruni, R., Giacobazzi, R., Gori, R., Garcia-Contreras, I., Pavlovic, D.: Abstract extension-
ality: on the properties of incomplete abstract interpretations. Proc. ACM Program. Lang.
4(POPL), 28:1–28:28 (2020). https://doi.org/10.1145/3371096

4. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A Logic for Locally Complete Abstract In-
terpretations. In: Proceedings 36th ACM/IEEE Symposium on Logic in Computer Science
(LICS 2021). pp. 1–13. IEEE (2021). https://doi.org/10.1109/LICS52264.
2021.9470608

5. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: Abstract interpretation repair. In: Proceed-
ings of the 43rd ACM SIGPLAN International Conference on Programming Language De-
sign and Implementation. p. 426–441. PLDI 2022, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3519939.3523453

6. Cohen, E., Kozen, D., Smith, F.: The complexity of Kleene algebra with tests. Tech. rep., Cor-
nell University, USA (1996), https://www.cs.cornell.edu/~kozen/Papers/
ckat

7. Conway, J.: Regular Algebra and Finite Machines. Chapman and Hall mathematics series,
Dover Publications (2012)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL 1977).
pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings
of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL 1979). pp. 269–282. ACM (1979). https://doi.org/10.1145/567752.
567778

10. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans. Comput.
Logic 7(4), 798–833 (oct 2006). https://doi.org/10.1145/1183278.1183285

11. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences 18(2), 194–211 (Apr 1979). https://doi.org/10.
1016/0022-0000(79)90046-1

12. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision pro-
cedure for NetKAT. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015. pp. 343–355. ACM (2015).
https://doi.org/10.1145/2676726.2677011

13. Giacobazzi, R., Ranzato, F., Scozzari., F.: Making abstract interpretation complete. Journal
of the ACM 47(2), 361–416 (March 2000). https://doi.org/10.1145/333979.
333989

14. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015. pp. 261–273 (2015). https://doi.org/10.1145/2676726.
2676987

15. Greenberg, M., Beckett, R., Campbell, E.: Kleene algebra modulo theories: A framework for
concrete KATs. In: Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. p. 594–608. PLDI 2022, Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3519939.3523722

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (oct 1969). https://doi.org/10.1145/363235.363259

21

https://doi.org/10.1145/2908080.2908108
https://doi.org/10.1145/2908080.2908108
https://doi.org/10.1145/3371096
https://doi.org/10.1145/3371096
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3519939.3523453
https://www.cs.cornell.edu/~kozen/Papers/ckat
https://www.cs.cornell.edu/~kozen/Papers/ckat
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/1183278.1183285
https://doi.org/10.1145/1183278.1183285
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259

17. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Languages
and Systems 19(3), 427–443 (May 1997). https://doi.org/10.1145/256167.
256195

18. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Logic 1(1),
60–76 (jul 2000). https://doi.org/10.1145/343369.343378

19. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability. In: Proceed-
ings 10th International Workshop on Computer Science Logic, CSL 1996, Annual Confer-
ence of the EACSL. Lecture Notes in Computer Science, vol. 1258, pp. 244–259. Springer
(1996). https://doi.org/10.1007/3-540-63172-0_43

20. Le, Q.L., Raad, A., Villard, J., Berdine, J., Dreyer, D., O’Hearn, P.W.: Finding real bugs in
big programs with incorrectness logic. Proc. ACM Program. Lang. 6(OOPSLA1) (apr 2022).
https://doi.org/10.1145/3527325

21. Mamouras, K.: Equational theories of abnormal termination based on kleene algebra. In:
Proceedings 20th International Conference on Foundations of Software Science and Com-
putation Structures, FOSSACS 2017. Lecture Notes in Computer Science, vol. 10203, pp.
88–105 (2017). https://doi.org/10.1007/978-3-662-54458-7_6

22. Milanese, M., Ranzato, F.: Local completeness logic on Kleene algebra with tests. arXiv
e-prints arXiv:2205.08128 (2022). https://doi.org/10.48550/ARXIV.2205.
08128

23. Möller, B., O’Hearn, P.W., Hoare, T.: On algebra of program correctness and incorrectness.
In: Proceedings of the 19th International Conference on Relational and Algebraic Methods in
Computer Science, RAMiCS 2021. Lecture Notes in Computer Science, vol. 13027, pp. 325–
343. Springer (2021). https://doi.org/10.1007/978-3-030-88701-8_20

24. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. Theoretical Com-
puter Science 351(2), 221–239 (Feb 2006). https://doi.org/10.1016/j.tcs.
2005.09.069

25. O’Hearn, P.W.: Incorrectness logic. Proceedings of the ACM on Programming Languages
4(POPL), 1–32 (Jan 2020). https://doi.org/10.1145/3371078

26. Poskitt, C.M.: Incorrectness logic for graph programs. In: Proceedings of the 14th In-
ternational Conference on Graph Transformation, ICGT 2021. Lecture Notes in Com-
puter Science, vol. 12741, pp. 81–101. Springer (2021). https://doi.org/10.1007/
978-3-030-78946-6_5

27. Raad, A., Berdine, J., Dang, H., Dreyer, D., O’Hearn, P.W., Villard, J.: Local reasoning
about the presence of bugs: Incorrectness separation logic. In: Proceedings 32nd Interna-
tional Conference on Computer Aided Verification, CAV 2020. Lecture Notes in Computer
Science, vol. 12225, pp. 225–252. Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_14

28. Raad, A., Berdine, J., Dreyer, D., O’Hearn, P.W.: Concurrent incorrectness separation logic.
Proc. ACM Program. Lang. 6(POPL), 1–29 (2022). https://doi.org/10.1145/
3498695

29. Ranzato, F.: Complete abstractions everywhere. In: Proceedings of the 14th International
Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2013.
Lecture Notes in Computer Science, vol. 7737, pp. 15–26. Springer (2013). https://
doi.org/10.1007/978-3-642-35873-9_3

30. Smolka, S., Eliopoulos, S.A., Foster, N., Guha, A.: A fast compiler for NetKAT. In: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015. pp. 328–341. ACM (2015). https://doi.org/10.1145/2784731.
2784761

31. Smolka, S., Kumar, P., Foster, N., Kozen, D., Silva, A.: Cantor meets Scott: Semantic foun-
dations for probabilistic networks. In: Proceedings of the 44th ACM SIGPLAN Sympo-

22

https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/343369.343378
https://doi.org/10.1145/343369.343378
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1145/3527325
https://doi.org/10.1145/3527325
https://doi.org/10.1007/978-3-662-54458-7_6
https://doi.org/10.1007/978-3-662-54458-7_6
https://doi.org/10.48550/ARXIV.2205.08128
https://doi.org/10.48550/ARXIV.2205.08128
https://doi.org/10.48550/ARXIV.2205.08128
https://doi.org/10.48550/ARXIV.2205.08128
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1016/j.tcs.2005.09.069
https://doi.org/10.1016/j.tcs.2005.09.069
https://doi.org/10.1016/j.tcs.2005.09.069
https://doi.org/10.1016/j.tcs.2005.09.069
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-78946-6_5
https://doi.org/10.1007/978-3-030-78946-6_5
https://doi.org/10.1007/978-3-030-78946-6_5
https://doi.org/10.1007/978-3-030-78946-6_5
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3498695
https://doi.org/10.1145/3498695
https://doi.org/10.1145/3498695
https://doi.org/10.1145/3498695
https://doi.org/10.1007/978-3-642-35873-9_3
https://doi.org/10.1007/978-3-642-35873-9_3
https://doi.org/10.1007/978-3-642-35873-9_3
https://doi.org/10.1007/978-3-642-35873-9_3
https://doi.org/10.1145/2784731.2784761
https://doi.org/10.1145/2784731.2784761
https://doi.org/10.1145/2784731.2784761
https://doi.org/10.1145/2784731.2784761

sium on Principles of Programming Languages. p. 557–571. POPL 2017, ACM (2017).
https://doi.org/10.1145/3009837.3009843

32. Yan, P., Jiang, H., Yu, N.: On incorrectness logic for quantum programs. Proc. ACM Pro-
gram. Lang. 6(OOPSLA1) (apr 2022). https://doi.org/10.1145/3527316

33. Zhang, C., de Amorim, A.A., Gaboardi, M.: On Incorrectness Logic and Kleene Algebra
with Top and Tests. Proceedings of the ACM on Programming Languages 6(POPL), 1–30
(Jan 2022). https://doi.org/10.1145/3498690

23

https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3527316
https://doi.org/10.1145/3527316
https://doi.org/10.1145/3498690
https://doi.org/10.1145/3498690

	Local Completeness Logic on Kleene Algebra with Tests

